
Efficient Approximate Parallel Prefix Adder Design  
 

Jihwan Lim, Yuseok Lee, Donghun Lee and Hoyoung Yoo  

Dept. of Electronics Engineering  

Chungnam National University  

Daejeon, Korea 

jhlim.cas@gmail.com, yslee.cas@gmail.com, dhlee.cas@gmail.com, hyyoo@cnu.ac.kr 

 

 

Abstract 
 

Parallel Prefix Adder (PPA) was proposed as a 

structure to improve the performance of serial adders 

by parallelizing the carry operation. While it 

increases area and power consumption, PPA offers a 

faster addition operation compared to serial adders, 

making it a suitable solution for high-performance 

accelerator design. In domains that utilize PPA, 

ongoing research aims to reduce its area and power 

consumption. Approximate Computing is a 

methodology introduced in response to this demand, 

sacrificing some bit accuracy to reduce both area and 

power consumption. This paper introduces generally 

applicable approximate techniques to reduce the area 

and power consumption of PPA and quantitatively 

determines the most efficient techniques for 

Approximate PPA through experiments. We propose 

an Approximate PPA using an efficient approximate 

technique combination and demonstrate the design's 

superiority by comparing its performance with the 

previously proposed AxPPA and circuit area saving, 

power saving, performance based on ASIC design. 

Our proposed design demonstrates a 52.74% circuit 

area saving, 42.74% power saving, a 53.15%  

reduction in MAE , and  a 53.6%  reduction in 

MRED effect compared to AxPPA designs.  

 

Keywords: Approximate computing(AxC), 

approximate technique, approximate adder(AxA), 

parallel prefix adders(PPA), approximate parallel 

prefix adder(AxPPA). 

 

1. Introduction 
 

Adders are widely used in the field of digital 

systems, serving a variety of applications, not just 

limited to basic arithmetic operations like 

multiplication and decimal addition but extending to 

more advanced applications in core and accelerator. 

An adder typically employs the Full-Adder as its basic 

design, which is composed of two Half-Adders. 

Design a Multi-bit Adder using multiple Full-Adders. 

Various structures for Multi-bit Adders have been 

proposed, such as Ripple Carry Adder(RCA), Carry 

Lookahead Adder(CLA), Carry Select Adder(CSLA), 

and Carry Skip Adder(CSKA). The simplest structure, 

RCA, connects Full-Adders in a linear fashion, 

making it the most area-efficient Multi-bit Adder. 

However, it suffers from significant delay due to the 

propagation of the carry signal. To resolve this 

problem, structures such as CLA, CSLA, and CSKA 

were proposed, each with its own method of carry 

calculation[1]. To more effectively resolve the delay 

problem, the Parallel Prefix Adder (PPA) structure 

was introduced. PPA consists of three stages, pre-

processing, prefix-processing, and post-processing. 

Different PPA has been proposed based on the 

configuration of the prefix-processing stage [3-6]. 

PPA offers the advantage of minimal delay compared 

to traditional serial adders. However, it requires logic 

for parallel carry calculation, which can result in 

suboptimal performance in terms of circuit area and 

power efficiency compared to serial adders. To 

resolve this problem with each adder design, research 

has been conducted on applying Approximate 

Computing(AxC) to adder to optimize accuracy and 

reduce circuit area and energy consumption, resulting 

in Approximate Adder(AxA). The range of AxC 

application includes the transistor level, full-adder 

level, multi-bit adder level, and PPA level. We 

conduct research on Approximate PPA with AxC 

applied at the PPA level. A structure with AxC 

applied to PPA is proposed in [2], known as AxPPA. 

This paper analyzes the limitations of AxPPA and 

introduces the Efficient Approximate PPA(EAxPPA). 

 

2. Background 
 

A. Parallel Prefix Adder 

PPA typically consists of three stages, pre-

processing, prefix-processing, and post-processing, 

with each stage employing different circuit 

configurations to perform specific functions. The first 

stage, pre-processing, is responsible for encoding the 

input operands 𝑎  and 𝑏 . It includes logic for 

generating the carry 𝑔 and logic for propagating the 

carry 𝑝. The boolean equations for the 𝑝 and 𝑔 of 

the i-th bit are given by (1), (2).  

The second stage, prefix-processing, groups 𝑝 and 

𝑔 to generate the final carry signal over several steps. 

prefix-processing is composed of an operation block 

𝑝𝑖 = 𝑎𝑖  ⨁ 𝑏𝑖 , (1) 

𝑔𝑖 = 𝑎𝑖  ∙  𝑏𝑖 . (2) 

 



called the Prefix Operator (PO). The boolean 

equations for the PO are provided by (3), (4).  

𝐺 is generated based on the previous node's 𝑔𝑘 and 

expressions for 𝑝𝑖  and 𝑔𝑖  for the i-th bit. 𝑃  is 

generated based on 𝑝𝑖  for the i-th bit and the 

previously calculated 𝑝𝑘 . The outputs 𝑃  and 𝐺 

from the PO are then connected as inputs to other POs. 

Unlike traditional serial adders, POs in PPA are 

connected in parallel over multiple stages to compute 

the carry quickly. The last stage, post-processing, 

combines the 𝑝 from the pre-processing stage and 

the individual bit carries 𝐺 calculated in the prefix-

processing stage to generate the final sum 𝑆  for 

operands. The boolean equation for the i-th bit is 

given by (5). 

PPA performance varies based on the configuration of 

the PO, leading to the proposal of different PPA types 

such as Kogge-Stone(KS) PPA[3], Brent-Kung(BK) 

PPA[4], Sklansky(SK) PPA[5], and Ladner-

Fischer(LF) PPA[6]. 

 

B. Approximate Technique 

The approximate techniques used in the design of 

Approximate PPA can be broadly defined as three 

main techniques: 

1) Elimination Technique: The elimination 

technique involves removing gates from the existing 

operator and connecting the input and output of the 

operator using wires. 

2) Constant Technique: The constant technique 

entails removing gates from the existing operator and 

connecting constant values, typically cte-0(1'b0) and 

cte-1(1'b1), to the output. 

 3) Simplification Technique: The simplification 

technique involves replacing the gates in the existing 

operator with other area-efficient gates(and, nand, or, 

nor, xor, nxor). 

 

C. AxPPA Design 

Approximate PPA refers to a modified structure of 

the existing PPA, where approximate techniques are 

applied to improve the area and power efficiency 

issues inherent in traditional PPA. One prominent 

structure is the AxPPA proposed in [2], which 

introduces modifications to address these 

inefficiencies. Figure 1 shows the structure of AxPPA. 

In the case of AxPPA, the key proposal involves 

divide the entire PPA into two parts, and apply 

elimination technique to low part POs to enhance 

efficiency. 

 

3. Proposed Method 
 

A. Limits of AxPPA 

AxPPA has several limitations that need to be 

considered. First, the approximate technique is only 

applied to POs. Ignoring the impact on performance 

when applied to other operators, apart from POs, is 

not advisable. Second, results are generated by 

passing through multiple operators from input to 

output. Therefore, basing the selection and application 

of an approximate technique on the error rate of a 

single PO is insufficient. Additionally, providing only 

a single technique lacks a comparative analysis of 

applying different techniques. In this paper, we 

consider to address these limitations and design an our 

proposed Approximate PPA. 

 

B. Optimal Approximate Technique Combination  

We find the optimal approximate technique 

combination applicable to PPA, and apply it to our 

design. At each stage, a different approximate 

technique is applied, and a comprehensive Z-Score 

𝐺𝑖 = 𝑔𝑘 ∙ (𝑝𝑖 +  𝑔𝑖), (3) 

𝑃𝑖 = 𝑝𝑖  ∙  𝑝𝑘 . (4) 

 

𝑆𝑖 = 𝑝𝑖 ⊕ 𝐺𝑖−1. (5) 

 

 
Figure 1. AxPPA structure 

 



analysis is conducted, considering Mean Absolute 

Error (MAE), Mean Relative Error Distance (MRED), 

and circuit area as the three metrics. The circuit area 

is calculated as the total area for each circuit in Table 

1, synthesized using the CMOS 28nm cell library and 

a 1.1V operating voltage with Synopsys Design 

Compiler. MAE, MRED, and Z-Score are defined as 

in (6), (7), and (8). 

For a sample size of 𝑛, 𝑥 represents the actual value, 

and 𝑦 represents the approximate value. MAE and 

MRED are used as accuracy evaluation metrics. The 

Z-Score is the value obtained by transforming the 

original value 𝑥  for each metric into a normal 

distribution. 𝜇  represents the mean, and 𝜎 

represents the standard deviation. The overall metric 

is determined by adding the Z-Score for all three 

metrics, we define the least Z-Score is optimal. The 

experiments is conducted 106  times for each 

combination, and the metrics is averaged for use. 

𝑴𝑨𝑬 =
𝟏

𝒏
∑|𝒙𝒊 − 𝒚𝒊|

𝒏

𝒊=𝟏

, (6) 

𝑴𝑹𝑬𝑫 =
𝟏

𝒏
∑

|𝒙𝒊 − 𝒚𝒊|

𝒙𝒊

𝒏

𝒊=𝟏

, (7) 

 

 
Figure 2. EAxPPA structure 

 
Table 1. Circuit Area by design. 

Design Area 

wire 0.468 

cte-0,1 0.351 

and 0.585 

nand 0.468 

or 0.585 

nor 0.468 

xor 1.053 

nxor 0.936 
 

 
Table 2. Top Z-Score by Combination. 

Combination Z-Score 

[nor, cte-0, cte-0, cte-0, nor] -5.2674 

[nor, cte-0, cte-1, cte-0, nor] -5.2646 

[nor, cte-1, cte-0, cte-0, nor] -5.2111 

[nor, cte-1, cte-1, cte-0, nor] -5.2074 

[nand, cte-1, cte-0, cte-1, nand] -5.1737 
 

 

 
Figure 3. Z-Score by Optimal Combination Bit. 

 

 
Figure 4. Z-Score by Area-Efficient Combination  

Bit. 

 

𝒁– 𝑺𝒄𝒐𝒓𝒆 =  
𝒙 − 𝝁

𝝈
. (8) 

 



Table 2 presents the results of the experiments, based 

on the overall Z-Score, to determine the optimal 

approximate technique for design. The experimental 

results, combination [nor, cte-0, cte-0, cte-0, nor] 

exhibited the best performance. 

 

C. Optimal Combination by Bit 

The optimal number of bits for applying the most 

efficient approximate technique is determined 

through quantitative experiments. In the lower bits, 

the optimal combination approximate technique 

derived from B section is applied, and performance is 

compared based on the applied bits to derive the 

optimal ratio. The experimental results for design is as 

shown in Figure 3. The design is optimal performance 

when the approximate bits are set at 10 bits. 

Subsequently, based on the derived ratios, the part 

where the approximate technique is applied is further 

divided into three parts, the most area-efficient 

combination for the lower bits. The experimental 

results for design is shown in Figure 4. The results 

show optimal performance when the applied bits are 

set at 8 bits. Figure 2 represents EAxPPA structure 

verified through experiments proposed in this paper. 

Different approximate techniques are applied for each 

stage and bit, and these choices are the result of 

quantitative analysis through experiments. EAxPPA 

is designed based on the 16 bits Sklansky PPA. The 

upper 6 bits are the same as PPA, approximate 

technique is applied to the lower 10 bits. Upper 2 bits 

of these are applied the optimal approximate 

technique combination, lower 8 bits are applied area-

efficient approximate technique combination. 

 

4. Experimental Results based on ASIC 
 

We conduct ASIC-based performance evaluations 

of the proposed structure. Using a CMOS 28nm 

standard cell library and a 1.1V operating voltage, we 

perform synthesis using Synopsys Design Compiler. 

We compare the results in terms of circuit area saving, 

power saving, MAE and MRED. For the comparison 

design, we implement PPA, AxPPA, and EAxPPA 

using Verilog. The approximate technique is applied 

to configure the bits to match the optimal 

configuration for the proposed structure. Table 3 

represents the experimental results. The experimental 

results show that AxPPA achieved a 33.03% circuit 

area saving and a 37.16% power saving compared to 

PPA. On the other hand, EAxPPA achieved a 

remarkable 68.35% circuit area saving and a 64.02% 

power saving, demonstrating superior hardware 

performance. Comparing AxPPA and EAxPPA, 

EAxPPA exhibit a 52.74% circuit area saving effect 

and a 42.74% power saving effect compared to 

AxPPA. Additionally, it achieve a 53.15% reduction 

in MAE and a 53.6% reduction in MRED. 

 

5. Conclusion 
 

In this paper, we propose the EAxPPA, as a 

solution to reduce area and power consumption in 

PPA. We conduct experiments for all possible 

combinations of approximate techniques, using MAE, 

MRED, and area Z-Score as metrics, to derive the 

most efficient approximate technique combination 

and optimal approximate bit through quantitative 

analysis. we evaluate EAxPPA using ASIC synthesis, 

achieving a 72.25% circuit area saving and 69.34% 

power saving compare to PPA. Furthermore, compare 

to AxPPA, EAxPPA achieve a 52.74% circuit area 

saving, a 42.74% power saving, a 53.15%  reduction 

in MAE , and  a 53.6%  reduction in MRED. Our 

method will be helpful in applying approximate 

techniques to other PPAs. 

 

Acknowledgement 
This work was supported by Institute of 

Information & communications Technology Planning 

& Evaluation (IITP) grant funded by the Korea 

government(MSIT) (2022-0-01170), This research 

was supported by Basic Science Reserarch Program 

through the National Research Foundation of Korea 

(NRF) funded by the Ministry of Education 

(2021R1I1A3055806), and the EDA tool was 

supported by the IC Design Education Center(IDEC), 

Korea. 

 

References 
 

[1] D. Esposito, D. De Caro and A. G. M. Strollo, "Variable 

Latency Speculative Parallel Prefix Adders for Unsigned 

and Signed Operands," in IEEE Transactions on Circuits 

and Systems I: Regular Papers, vol. 63, no. 8, pp. 1200-1209, 

Aug. 2016. 

[2] M. M. A. d. Rosa, G. Paim, P. Ü . L. d. Costa, E. A. C. d. 

Costa, R. I. Soares and S. Bampi, "AxPPA: Approximate 

Parallel Prefix Adders," in IEEE Transactions on Very 

Large Scale Integration (VLSI) Systems, vol. 31, no. 1, pp. 

17-28, Jan. 2023. 

[3] P. M. Kogge and H. S. Stone, “A parallel algorithm for 

the efficient solution of a general class of recurrence 

equations,” IEEE Trans. Comput., vol. C-22, no. 8, pp. 786–

793, Aug. 1973. 

[4] R. P. Brent and H. T. Kung, “A regular layout for parallel 

adders,” IEEE Trans. Comput., vol. C-31, no. 3, pp. 260–

264, Mar. 1982. 

[5] J. Sklansky, “Conditional-sum addition logic,” IEEE 

Trans. Electron. Comput., vol. EC-9, no. 2, pp. 226–231, 

Jun. 1960. 

[6] R. Ladner and M. Fischer, “Parallel prefix computation,” 

J. ACM, vol. 27, pp. 831–838, Oct. 1980. 

Table 3. AxPPA and EAxPPA Comparison 

Matrix AxPPA EAxPPA 

Circuit Area Saving 33.03% 68.35% 

Power Saving 37.16% 64.02% 

MAE 512.19 239.94 

MRED 2.125% 0.986% 
 

 


